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Abstract— This paper investigates the Fault Tolerant Con-
trol (FTC) for Multi-User Telerehabilitation Systems (MUTSs)
which are modelled as Itô stochastic differential equations with
the occurrence of actuator loss-of-effectiveness faults, directed
link failures, communication noise, and disturbances. An active
FTC strategy using an Adaptive Sliding Mode Control (ASMC)
method is addressed. By employing such strategy, MUTSs
achieve stochastic consensus in the mean square sense onto
the predefined stochastic switching sliding surfaces in finite
time. Finally, Stochastic Input-to-State Stability (SISS) of the
systems’ states (positions, velocities, and orientations) will be
shown and a numerical simulation will be provided.

I. INTRODUCTION

Multilateral teleoperation systems have attracted interests
of many researchers in the past decades. These systems
have emerged to cope with some practical applications such
as hazardous material transportation, space exploration etc.
which are impossible by single-master, single-slave config-
uration. One of the main coordination/cooperation control
schemes for multilateral teleoperation systems in the liter-
ature is the leader-follower control approach by which the
states of slaves converge to the master’s states using local in-
formation of their neighbours. In applications of multilateral
teleoperation systems and particularly in telerehabilitation,
the remote robots (slave robots) are long away from local
robots (master robots). Thus, it is impossible to repair the
distance robots at the time of failures.

Fault Tolerant Control (FTC) for a network of manipula-
tors such as Multi-User Telerehabilitation Systems (MUTSs)
enables the operator to teleoperate several distance robots
and feel the force feedback in a reliable and safe way.
Fault tolerability allows systems to overcome faults’ effects
and ensures acceptable performance for desired tasks mainly
through control reconfigurations.

In this paper, we restrict our attention to the single-
master multiple-slave configuration where the slave robots
are teleoperated by a master and MUTSs are modelled as
Multi-Agent Systems (MASs).

It should be pointed out that the performance of MASs in
presence of actuator faults in some agents is investigated in
the literature such as [1]–[7], to name a few. In addition, due
to sensor imperfect measurements etc. communication noise
is unavoidable. Also, randomly link failures may result in the
failure or instability of the systems. Therefore, the proposed
control approach is designed to address these challenges
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by employing Markovian jump structure. In recent years,
Markovian Jump System (MJSs) have been extensively ana-
lyzed in networked systems ( [8]–[12]).

The aim of this paper is to propose a Stochastic Input-
to-State Stability (SISS) of MUTSs with considering com-
munication noise, actuator faults, directed link failures, and
disturbance simultaneously. To the best of our knowledge,
there are no other publications in the literature that address
the SISS of MUTSs. It is worth mentioning that this work
is the first attempt to solve the active FTC of MUTSs by
considering challenges mentioned before.

The remainder of the paper is organized into five sections.
In the next section, mathematical background and notation
are outlined. Next, system description will be provided. After
that, the proposed controller laws which are based on the
Adaptive Sliding Mode Control (ASMC) method will be
discussed. In Section V, simulation results are given. Finally,
the last section concludes the paper.

II. MATHEMATICAL BACKGROUND AND NOTATION

A. Notation

For a vector w=(w1, · · · ,wn), wi ∈R and a matrix W , con-

sider ‖w‖2 =
(

∑
n
i=1 w2

i

) 1
2
, ‖w‖1 =

(
∑

n
i=1 |wi|

)
and ‖W‖2 =

λmax(W ∗W )
1
2 where λmax(·) is the maximum eigenvalue of

a matrix and W ∗ is the conjugate transpose of W . We define
signum function as sgn(w) = [sgn(w1), · · · ,sgn(wn)] and di-
agonal matrix as diag(w) = diag(w1, · · · ,wn). Let ⊗ denotes
the Kronecker product, 1 = [1,1, · · · ,1]T , 0 = [0,0, · · · ,0]T
and Im is an identity matrix. It should b noted that for
convenience, we will write the 2−norm as ‖ · ‖ to replace
‖·‖2. Furthermore, a function F(t) is said to be of class Ck if
its derivatives for k ∈ {1,2, · · ·} exist and are continuous (the
continuity is implied by differentiability for all the derivatives
except for F(k)(t)).

The following definition describes the concept of the mean
square stability of a random variable.

Definition 1 ( [13]): Consider r(t) to be a random vari-
able. For a scalar a > 0, r(t) converges in the a’th
mean to zero (or asymptotically a’th mean stable), if
lim
t→∞

E{‖r(t)‖a} = 0. Also, we say that r(t) is mean square

stable, if lim
t→∞

E{‖r(t)‖2}= 0.

B. Graph Theory

Information exchange is modelled by a weighted digraph
(or directed graph). Consider G = (V,E,A) with the node set
V = {V1, . . .VN}, set of edges E ⊆ V ×V and a weighted



adjacency matrix A(t) = [ai j (t)]N×N ∈ RN×N , ai j (t) ≥ 0.
a ji (t)> 0 means that the i’th node receives information from
node j then ei j(t) = (Vi,Vj) ∈ E and vice versa. ai j (t) = 0
if ei j = (Vi,Vj) /∈ E and the i’th node has no self-loop
(i = j). neighbours of the node i is defined as Ni (t) ={

Vj ∈V : (Vj,Vi) ∈ E
}

. A Sequence of edges in a directed
graph of the form ei j,e jk, . . . is called a directed path. Graph
G has at least one node with directed paths to all others
nodes if and only if digraph G has a directed spanning tree.
The Laplacian matrix L(t) = [li j (t)]N×N of graph G(t) is
defined as [li j (t)]N×N in which li j (t) =−ai j (t), ∀ i 6= j and
lii (t) = ∑ j∈Ni(t), j 6=i ai j (t), ∀i, j ∈ {1, . . .n}.

C. Markovian Process and Switching Topologies

In randomly switching topologies, MUTSs can be viewed
as a class of stochastic MJSs in a complete fixed probability
space (Ω,F,{Ft}t≥0,P) with filtration {Ft}t≥0 where Ω is
the sample space, F is the σ -algebra of sample space subsets,
and P is the probability measure on F.

Consider a finite-state measurable Markovian process
{ηt , t ∈ [0,T]} whose state-space is S

∆
= {1,2, · · · ,v} and its

generator is ψi j with transition probability pi j from topology
i at time t to topology j at the time t + δ , i, j ∈ S. Then,
transition probability pi j is given by

pi, j = Prob(ηt+δ
= j|ηt = i) =

{
ψi, jδ +o(δ ) if i 6= j,
1+ψi,iδ +o(δ ) if n = j,

ψi,i =−
v

∑
l=1,l 6=i

ψil ,ψil ≥ 0 ∀i, j ∈ S, i 6= j.

where δ ≥ 0 and limδ→0,δ>0 o(δ )/δ = 0. The notation o(δ )
denotes infinitesimal terms of order strictly higher than 1.

III. SYSTEM DESCRIPTION, ORIENTATION AND
COMMUNICATION NOISE MODEL

A. System Description

In this paper, a network of MUTSs with Euler-Lagrange
dynamics is considered such that each system (n-Degree Of
Freedom (DOF) manipulator) is a node in the directed graph
G. The dynamics of the manipulators can be expressed as

M(θi)θ̈i +C(θi, θ̇i)θ̇i +g(θi) = τi + τhi (1)

in which τi is the controller input and τhi is the force induced
by an operator or environment.

From [14], the task space dynamic model of the master
and slaves are given by the following equations, respectively.

Ml(θl)ẍl +Cl(θl , θ̇l)ẋl +gl(θl) = fh + fl (2)

and

Mri(θri)ẍri +Cri(θri, θ̇ri)ẋri +gri(θri) = fri + fei (3)

where fh := [hT
h ,m

T
h ]

T and fei := [hT
ei,m

T
ei]

T , i ∈ {1, · · · ,N}.
xl , xri represent task space trajectories of the master’s and
slaves’ end-effectors, respectively. In addition, hh, hei are
the Cartesian linear forces and mh, mei are Cartesian linear
moments. Also, Mri(θri), Ml(θl), Cri(θri, θ̇ri), and Cl(θl , θ̇l)

are m×m, symmetric, positive-definite inertia and Coriolis
centripetal matrices, respectively. In addition, gri(θri) and
gl(θl) are m× 1 vectors of gravity force, fri and fl are
m× 1 vectors of applied control forces, and fh is an m× 1
vector of external force acts on the master’s end-effector by
an operator. Also, fei is an m×1 vector of external force acts
on the i’th slave’s end-effector by its environment. Following
this, reformulation of Equations (2) and (3) yields

ẋi = vi

v̇i = h̄i(θi, θ̇i)+ f̄i + f̄ei, i ∈ {0,1, · · · ,N}
(4)

where h̄i(θi, θ̇i) =−M−1
i

(
Ci(θi, θ̇i)vi+gi(θi)

)
, f̄ei =M−1

ei fei,

and f̄i =M−1
i fi. Also, xi and vi are the task space trajectories

and velocities of the end-effectors, respectively. We assume
the agent 0 be the leader of MASs and the other agents
({1, · · · ,N}) are the followers. The following assumption
ensures that the leader’s states (positions, velocities, and
orientations) are globally reachable from any i’th node.

Assumption 1: The graphs of MUTSs’networks are di-
rected and weakly connected.

Remark 1: Consider a non-negative diagonal matrix B =
diag(α10, · · · ,αN0) ∈ RN×N such that there exists at least
a αi0 > 0, ∀i ∈ {1, · · · ,N} then L̃ = L+ B is a full rank,
symmetric, positive-definite matrix.

Assumption 2: Mi(·) is a positive-definite matrix. In addi-
tion, Mi(·), Ci(·), gi(·) are C1 functions. Also, fei is locally
bounded.

B. Representing the orientation: Unit-quaternions

The unit-quaternion for the i’th robot is denoted by Ji
which includes two elements ji ∈ R and Ji ∈ R3 such that

Ji =

[
ji
Ji

]
∈ R4, j2

i + JT
i Ji = 1 (5)

From [15] and [16], the relation between the time-
derivative of the unit-quaternion and the angular velocity is
given by

J̇i =
1
2
ZT (Ji)ωi, Z

T (Ji) :=
[
−JT

i
jiI3−S(Ji)

]
in which, S(·) is a skew-symmetric matrix operator. There-
fore, augmented vector xi are defined as

ẋi =

[
ẋi
J̇i

]
= Π(Ji)

T
[

ẋi
ωi

]
, Π(Ji) =

[
I3 03×4
03

1
2Z

T (Ji)

]
∈ R6×7

Assumption 3: There exists two constants ζ1 and ζ2 such
that for states xl , vl , xri and vri,∥∥∥h̄ri(θri, θ̇ri)− h̄l(θl , θ̇l)

∥∥∥≤ ζ1

∥∥∥xri−xl

∥∥∥+ζ2

∥∥∥vri− vl

∥∥∥
C. Communication Noise Model

It is supposed that the i’th agent receives information
from its neighbours thorough noisy channels which can be
modelled for every node j ∈ Ni(t) as x∗ji = x ji + σ jiω ji,
x∗0i = x0i +σ0iω0i, v∗ji = v ji +σ jiω ji, and v∗0i = v0i +σ0iω0i

where
{

ω ji, i, j ∈ {1,2, · · · ,N}
}

are independent standard
white noises and σ ji is the noise intensity. In addition, Σi =



diag
(

σ1i+σ10, . . . ,σNi+σN0

)
, Σ = diag

(
ρ̄T

1 Σ1, . . . , ρ̄
T
NΣN

)
,

Σzi = diag
(

σ1i, . . . ,σNi

)
, Σz = diag

(
ᾱT

1 Σz1, . . . , ᾱ
T
NΣzN

)
,

ωi =
[
ω1i +ω10, . . . ,ωNi +ωN0

]T
, and η =

[
ωT

1 , . . . ,ω
T
N

]
. It

has to be noted that ρ̄i and ᾱi refer to i’th row of L̃ and L,
respectively.

IV. MAIN RESULTS

A. System Reformulation

Consider Equation (4), each robot’s consensus error can
be defined as

exi = ∑
N
j=1 ai j(t)(xri−xr j)+αi0(t)(xri−xl)

evi = ∑
N
j=1 ai j(t)(vri− vr j)+αi0(t)(vri− v0)

(6)

Equation (6) in a collective form with considering the MJSs
are reformulated as

Λ̇1 =
(

L̃(ηt)⊗ Im

)
Π(J)(ẊN− Ẋr)

Λ̇2 =
(

L̃(ηt)⊗ Im

)(
H̄−1⊗ h̄0 + F̄−1⊗ f̄0

) (7)

where XN =
[
xT

1 , . . . ,x
T
N

]T
, Xr = 1 ⊗ x0, Π(J) =[

Π(Ji)
T , · · · ,Π(JN)

T
]T

, H̄ =
[
h̄1(θ1, θ̇1), . . . , h̄N(θN , θ̇N)

]T
,

h̄0 = h̄0(θ0, θ̇0), F̄ =
[

f̄ T
1 + f̄ T

e1, . . . , f̄ T
N + f̄ T

eN

]T
,

F̄E =
[

f̄ T
e1, . . . , f̄ T

eN

]T
, f̄0 = f̄ T

0 + f̄ T
0e, Λ1 =

[
eT

x1,e
T
x2, . . . ,e

T
xN

]T
,

and Λ2 =
[
eT

v1,e
T
v2, . . . ,e

T
vN

]T
.

Remark 2: The Leader-following stochastic consensus of
MUTSs is equivalent to the SISS of System (7).

B. Actuator Fault Model: Loss of Effectiveness Faults

In System (7), actuator faults are modelled in the following
collective form F̄ = (INm−Q)F̄D and distributed form of i’th
actuator fault is,

f̄i = (Im−Qi) f̄Di (8)

where f̄Di denotes the desired control input. In addition,
Q = diag(Q1, · · · ,QN) and Qi = diag(qi1,qi2, · · · ,qim) repre-
sent the fault severity of the actuators in which the scalar
qi j satisfying 0 ≤ q

i j
≤ qi j ≤ q̄i j < 1, ∀i ∈ {1, · · · ,N} and

j ∈ {1, · · · ,m}. The scalar qi j is called as the Effectiveness
Loss Value (ELV) of the j’th actuator of i’th slave.

Remark 3: The actuators’ fault model (8) covers the fault-
free cases (q

i j
= q̄i j = 0) and the faulty cases ( 0< q

i j
≤ qi j ≤

q̄i j < 1). However, failure cases (q
i
= q̄i j = 1) are excluded

in (8) since the matrix (I−Q) will not be a full rank matrix
which is necessary in the controller design.

C. Reachability of Stochastic Sliding Surfaces

Through the online estimation of ELVs of faulty actuators,
it is shown that controller laws (13) to (15) can drive the
system’s dynamic onto the sliding surfaces (9).

Theorem 1: Consider System (7), fault model (8), As-
sumptions 1, 2, and 3. The distributed control protocols
(13) to (15) with the control input f̄Di = fai + fbi + fci,

i ∈ {0,1, · · · ,N} and updating law (11) make the sliding
surfaces

Γ = Λ2 +ϒ1Λ1 +ϒ2

∫ t

0
Λ1(τ)dτ−ϒ3

∫ t

0
FE(τ)dτ (9)

finite time mean square stable if for a Ξ(k), k ∈ S, Linear
Matrix Inequalities (LMIs)

−Ω(k)Ξ(k)−Ξ
T (k)Ω(k)+

ν

∑
j=1
ψk jΩ( j)≺ 0 (10)

has symmetric, positive-definite matrix solutions Ω(k), k∈ S.
Proof: See Appendix 1.

The updating law for q̂i j, i∈{1, · · · ,N} and j∈{1, · · · ,m}
is given as

˙̂qi j =

{
0 { q̂i j = q

i j
and χ ≤ 0} or {q̂i j = q̄i j and χ ≥ 0}

χ Otherwise.
(11)

where χ = Si jΓ
T Ωii

(
L̃−1 ⊗ Im

)
c:i

(
1− q̂i j

)−1(
Fa + Fb

)
r:i

.
Si j > 0 is the updating gain and Ac:i and Br:i refer i’th
column and row of A and B, respectively.

Remark 4: Updating law (11) projects the estimate q̂i j
into the interval [q

i j
, q̄i j]. It is assumed that in the actuator

fault model (8), the lower and upper bounds q
i j
, q̄i j satisfy

0 < q
i j
≤ qi j ≤ q̄i j < 1. This means that 0 < 1− q̂i j ≤ 1.

Hence, I− Q̂ is invertible.

D. Sliding Motion Analysis

From now on, we examine SISS of the sliding surfaces
(9).

Definition 2: For System (9), a function V (x, t) ∈
C 2,1(Rn× [t0,∞);R+) is called an SISS-Lyapunov function,
if there exists functions ᾱ,α ∈K∞,α,χ ∈K such that for
all x ∈ Rn,u ∈ Rm and t ≥ t0 and finite-state measurable
Markovian process {ηt , t ∈ [0,T]} provided that α(|x|) ≤
V (x, t,ηt)≤ ᾱ(|x|) and for each possible value ηt = k, k ∈ S:

LV (x, t,k) =
∂V (x, t,k)

∂ t
+

∂V (x, t,k)
∂x

f (t,x,k,u)

+
1
2

Tr
(

gT (t,x,k,u)
∂ 2V (x, t,k)

∂x2 g(x, t,k,u)
)

+∑
ν

j=1 γk jx≤−α(|x|), ∀|x| ≥ χ(‖u‖)

where L is the infinitesimal generator.
Theorem 2: System (9) is SISS if there exists an SISS-

Lyapunov function (V ;α1,α2,α,χ) and the function α ◦α
−1
2

is convex.
Proof: This theorem is the extension of Theorem 2 in

[17], thus it is skipped for brevity.
The following theorem ensures SISS of the sliding sur-

faces (9).
Theorem 3: The sliding surfaces (9) is stochastic input to

state stable, if for given positive-definite matrices N(k), there
exist positive-definite matrices P(k) satisfying

2P(k)Z +
ν

∑
j=1
ψk jP( j)+N(K) = 0, k ∈ S (12)



where Z =

[
0 1
−ϒ2 −ϒ1

]
.

Proof: The proof follows from [1, Theorem 4.5]
(skipped due to the page limit).

V. SIMULATION EXAMPLE

As a numerical example, we consider MUTSs of five
AUTWRIST rehabilitation robots (depicted in Fig. 1). The

(a) (b) (c) (d)

Fig. 1: AUTWRIST Robot (a) First Rotation ψ . (b) Second
Rotation θ . (c) Third Rotation φ . (d) ADAMS Model.

kinematic and dynamic model of this robot is in the form of
(1) and was introduced in [18, Appendix A] which satisfies
Assumption 2.

The task space dynamic model (4) has the following well-
known property ( [14]) that for all θ , θ̇ and ẋ, there exists a
constant κ ∈R+ such that the right hand side of the equation
C(θ , θ̇)ẋ≤ κ|ẋ|2 is absolutely continuous then one concludes
its Lipschitz continuity. Therefore, Assumption 3 is satisfied.

The slaves interact with their environments while Carte-
sian linear moments fei, i∈{1, · · · ,N} as disturbances act on
the end-effectors (constrained motion) during the times t =
32s and t = 40s. This force for each slave may be described
by fei =−Ke(xi−x0)−Be(ẋi− ẋ0)+0.5×sin(t)×

[
1
1
1

]
where

x0 and ẋ0 are desired trajectory and velocity in the Cartesian
space and Ke = 5× I2 and Be = I2. This force is depicted in
Fig. 2(a). According to Assumption 2, fei is locally bounded.

It is assumed that at t = 2s, the actuator of joint 1 in slave
3, the actuator of joint 2 in slave 4 and the actuator of joint
2 in slave 2 are faulty with ELVs q31 = 0.5, q42 = 0.6 and
q22 = 0.1, respectively. Also, in fault model (8), we assume
q

i j
= 0 and q̄i j = 0.75 for all slaves and their actuators. In

addition, let the intensity of the measurement noise σ ji =
0.1, ∀i, j = {0,1, · · · ,N}.

The network topologies are depicted in Fig. 3. From
Fig. 3, it can be seen that there is a spanning tree in all
topologies which means that Assumption 1 is satisfied. Also,
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Fig. 2: (a): The external linear moment (b):Markovian
Switching Signal

the switching signal for MJSs is depicted in Fig. 2(b) and
the corresponding transition probability matrix is given in [1,
Equation (45)].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3: Communication topologies.

The forms of the desired sliding surfaces and the proposed
distributed controller are as (9) and (13) to (15), respectively
with the following parameters ϒ1 = M−1

d Cd , ϒ2 = M−1
d Kd ,

and ϒ3 =M−1
d with Md = 0.2×I3, Kd = I3, and Cd = 1.7×I3.

Also, the feasibility of the LMIs (10) and Equation (12) has
been verified in [1, Section 5]

Orientation of the first joint in slave 3 compared to the
corresponding master’s orientation is shown in Fig. 5. The
initial positions and velocities are chosen randomly. Due to
the page limit, comparison results for other joints and slaves
are omitted. Also, estimation of the fault severity of the
faulty actuators using updating law (11) are shown in Fig.
6. The control inputs applied to the joints of slave 3 and the
corresponding sliding surfaces are depicted in Fig. 4(a) and
Fig. 4(b), respectively.

Remark 5: It is worth to mention that from Fig. 6, the
estimated values q̂42, q̂31 and q̂22 can converge but not
necessarily to their true values (here, q42 = 0.6, q31 = 0.5
and q22 = 0.1).

VI. CONCLUSION

In this paper, the focus is on the fault tolerant coordi-
nated control for MUTSs with the directed link failures
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First Joint Control Input
Second Joint Control Input
Third Joint Control Input

Fig. 4: (a): Stochastic Sliding Surfaces of Slave 3
(b):Control Inputs applied to the joints of Slave 3.
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Fig. 6: Estimation of ELVs for faulty actuators: q̂42, q̂31
and q̂22.

and communication noise in the presence of the actuator
faults and disturbances. We address a definition for stochastic
input-to-state stable Lyapunov function and two theorems
for assurance of SISS based on the ASMC method and
weak infinitesimal operation in term of LMIs. The simulation
results illustrate the validity of the presented algorithms. In
the terms of future work, communication time-delays and
sensor faults may be considered.

APPENDIX 1: PROOFS

Proof: [Proof of Theorem 1] Consider the desired
distributed protocol law f̄Di = fai + fbi + fci where

fai =
1

di +αi0
(Im− Q̂i)

−1
(

∑
N
j=1 ai j(ηt) f ∗a j +αi0 f ∗0

)
(13)

fbi =
1

di +αi0

(
Im− Q̂i

)−1
[
∑

N
j=1 ai j(ηt) f ∗b j

−ϒ1ii

(
∑

N
j=1 ai j(ηt)(vi− v∗j)+αi0(vi− v∗0)

)
−ϒ2ii

(
∑

N
j=1 ai j(ηt)(xi−x∗j)+αi0(xi−x∗0)

)
+ϒ3ii f̄ T

ie

]
(14)

fci =
1

di +αi0

[
N

∑
j=1

ai j(ηt) f ∗c j +ξii(ηt)

(
N

∑
j=1

ai j(ηt)(vi− v∗j)

+αi0(vi− v∗0)+ϒ1ii

(
∑

N
j=1 ai j(ηt)(xi−x∗j)+αi0(xi−x∗0)

)
+ϒ2ii

∫ t

0

(
∑

N
j=1 ai j(ηt)(xi−x∗j)+αi0(xi−x∗0)

)
dτ

−ϒ3ii

∫ t

0
f̄ T
ie dτ

)
−Φ

Asgn

(
ρii

(
∑

N
j=1 ai j(ηt)(vi− v∗j)

+αi0(vi− v∗0)+ϒ1ii

( N

∑
j=1

ai j(ηt)(xi−x∗j)+αi0(xi−x∗0)
)

+ϒ2ii

t∫
0

( N

∑
j=1

ai j(ηt)(xi−x∗j)+αi0(xi−x∗0)
)

dτ

−ϒ3ii

t∫
0

f̄ T
ie dτ

))]
(15)

in which f ∗0 = f0 + σ0iω0i, f ∗a j = fa j + σ jiω ji, f ∗b j =

fb j + σ jiω ji, and f ∗c j = fc j + σ jiω ji. In addition, Q̂i =

diag
{

q̂i1, q̂i2, · · · , q̂im

}
where q̂i j is the estimation of ELV

for the j’th actuator of i’th slave. In fci, ΦA is defined as

Φ
A =

1
1− q̄max

[∥∥∥− (L̃(k)−1⊗ Im)(1⊗ f0)
∥∥∥+ω

∥∥∥φ ⊗ f0

∥∥∥
+ c0 +g+

∥∥∥ϒ1Λ̇1 +ϒ2Λ1−ϒ3FE

∥∥∥+ω

∥∥∥ϒ3FE −ϒ1Λ̇1−ϒ2Λ1

∥∥∥]
in which c0 is a small positive number, g = ω(ζ1‖Λ1‖+
ζ2‖Λ2‖), ω =

∥∥L̃(k)
∥∥∥∥L̃(k)−1

∥∥. Also, ϒ1ii, ϒ2ii, ϒ3ii, ξii and
ρii are diagonal elements of diagonal matrices ϒ1, ϒ2, ϒ3,
Ξ, and Ω, respectively. Collective form of control protocol
(13) to (15) can be written as

Fa =
(

I− Q̂
)−1(

L̃(ηt)
−1⊗ Im

)[
(φ ⊗ f0)+Ση

]
Fb =

(
I− Q̂

)−1(
L̃(ηt)

−1⊗ Im

)[
−ϒ1Λ̇1−ϒ2Λ1 +ϒ3FE

−ϒ1Ση−ϒ2Ση +Σzη

]
Fc =−

(
L̃(ηt)

−1⊗ Im

)[
Ξ(ηt)Γ +Φ

Asgn
(

Ω(ηt)Γ
)
+Σzη

]
(16)

where φ = [α10, . . . ,αN0]
T and Q̂= diag

{
Q̂1, · · · , Q̂N

}
.



Now, Consider the Lyapunov function

V (Γ ,ηt , t) = Γ
T

Ω(ηt)Γ +
N

∑
i=1

N

∑
j=1

S−1
i j q̃2

i j (17)

where q̃i j = q̂i j − qi j is the estimation error and Q̃i =

diag
{

q̃i1, · · · , q̃im

}
, ∀i ∈ {1,2, · · · ,N}.

For each possible value ηt = k, k ∈ S, weak infinitesimal
of the Lyapunov function (17) by using binomial inverse(

I− Q̂
)−1

= I +
(

I− Q̂
)−1

Q̂ yields

LV (Γ ,k, t)=Γ
T

Ω(k)Γ̇ +Γ̇
T

Ω(k)Γ +Γ
T
( ν

∑
j=1
ψk jΩ( j)

)
Γ

+2
N

∑
i=1

N

∑
j=1

S−1
i j q̃i j ˙̃qi j +

1
2

Tr
(

Ψ
T
0 (Ω(k)+Ω

T (k))Ψ0

)
where Ψ0 =

(
L̃(ηt)⊗ Im

)
(I−Q)

(
L̃(ηt)

−1⊗ Im

)(
Σ +2Σz

)
.

Therefore, by using the differential form of sliding sur-
faces (9) which is

dΓ = dΛ2 +ϒ1dΛ1 +ϒ2Λ1dt−ϒ3FEdt

one concludes that

LV (Γ ,k, t)≤ 2Γ
T

Ω(k)

[
− (L̃(k)−1⊗ Im)(1⊗ f0)

+ϒ1Λ̇1 +ϒ2Λ1−ϒ3FE +
(
L̃(k)−1⊗ Im

)(
Fa +Fb

)
+
(
L̃(k)−1⊗ Im

)
(Q̃)(I− Q̂)−1(Fa +Fb)

+(L̃(k)−1⊗ Im)
[
H̄−1⊗h0 +(I−Q)Fc

]]

+
1
2

Tr
(

Ψ
T
0 (Ω(k)+Ω

T (k))Ψ0

)
+2

N

∑
i=1

N

∑
j=1

S−1
i j q̃i j ˙̃qi j

(18)

From (10) and with substituting (16) into (18), we con-
clude that

LV (Γ ,k, t)≤ 2
∥∥∥Γ Ω(k)

∥∥∥[∥∥∥− (L̃(k)−1⊗ Im)(1⊗ f0)
∥∥∥

+
∥∥∥ϒ1Λ̇1 +ϒ2Λ1−ϒ3FE

∥∥∥+∥∥∥φ ⊗ f0

∥∥∥
+
∥∥∥−ϒ1Λ̇1−ϒ2Λ1 +ϒ3FE

∥∥∥]+2
N

∑
i=1

N

∑
j=1

S−1
i j q̃i j ˙̃qi j

+2Γ Ω(k)
(
L̃(k)−1⊗ Im

)
(Q̃)(I− Q̂)−1(Fa +Fb)

−2Φ
A(1− q̄max)

∥∥∥Γ Ω(k)
∥∥∥

1
+2g

∥∥∥Γ Ω(k)
∥∥∥

+
1
2

Tr
(
(Ψ0)

T (Ω(k)+Ω
T (k))(Ψ0)

)
Note that considering the updating law (11), one has

2Γ Ω(k)
(

L̃(k)−1⊗ Im

)
(Q̃)(I− Q̂)−1

(
Fa +Fb

)
+2

N

∑
i=1

m

∑
j=1

S−1
i j q̃i j ˙̃qi j ≤ 0

From now on, the rest of the proos is the same as the
proof of Theorem 4.1 in [1].
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